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Abstract

The unsteady, incompressible, viscous laminar flow over a NACA 0012 airfoil is simulated, and the effects of several

parameters investigated. A vortex method is used to solve the two-dimensional Navier–Stokes equations in the

vorticity/stream-function form. By applying an operator-splitting method, the ‘‘convection’’ and ‘‘diffusion’’ equations

are solved sequentially at each time step. The convection equation is solved using the vortex-in-cell method, and the

diffusion equation using a second-order ADI finite difference scheme. The airfoil profile is obtained by mapping a circle

in the computational domain into the physical domain through a Joukowski transformation. The effects of several

parameters are investigated, such as the reduced frequency, mean angle of attack, location of pitch axis, and the

Reynolds number. It is observed that the reduced frequency has the most influence on the flow field.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Stall of an airfoil is characterized by a sudden drop in its normal force following an increase in the angle of attack

that causes flow separation. Dynamic stall, on the other hand, is an unsteady phenomenon, where the airfoil pitches

through the static stall angle, while the normal force continues to increase beyond its maximum value for unstalled

conditions. This phenomenon is often associated with the formation of a leading-edge vortex, called the dynamic stall

vortex, that travels along the airfoil surface as it grows, and finally separates from the airfoil at its trailing edge.

However, some researchers (e.g., Jumper and Huge, 1991) attribute this lift overshoot to a delay in separation at high

incidence, rather than the formation and subsequent convection of the dynamic stall vortex.

The dynamic stall phenomena was first encountered in the helicopter industry, where large torsional oscillations of

the blades was observed and attributed to the periodic stalling and unstalling of each blade on the retreating side of the

rotor disk. This was considered to be a serious problem, limiting the forward speed and gross weight of the helicopter

(Crimi, 1973). This phenomenon may also occur, for example, on axial-flow compressor blades, large wind-mill rotors,

or the wings of modern fighters during fast-pitching maneuvers.

Examples of early analytical studies of unsteady airfoil stall can be found in Carta (1967a, b), Ericsson (1967), and

Ericsson and Reding (1971). Ericsson and Reding (1972) analyzed the dynamic stall of a helicopter blade section using a

quasi-steady theory. Static experimental data were used as input to predict the dynamic stall characteristics of the

airfoil; hence, the applicability of this theory was limited by the availability of the required static experimental data.

They found the technique to be successful so long as the reduced frequency, k � pfoc=UN; was not high ðko0:5Þ; where
fo; c; and UN are the oscillation frequency, chord length, and free-stream velocity, respectively. Further improvements

and modifications to their method can be found, for example, in Ericsson and Reding (1980, 1988).
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McCroskey et al. (1976) experimentally studied dynamic stall, and the associated unsteady boundary layer

separation, in incompressible flow at high Reynolds numbers on leading-edge-modified NACA 0012 airfoils. They

found the Reynolds number to have a small effect on the normal force and pitching moment coefficients, Cn and Cm: On
the other hand, the effects of reduced frequency and leading-edge profile of the airfoil were found to be major. An

experimental investigation was performed by Lorber and Carta (1988) to study dynamic stall aerodynamics of an airfoil

at constant pitch rate and high Reynolds number (up to 4� 106). It was observed that the strength of the dynamic stall
vortex increased with pitch rate, and decreased with increasing Mach number. The starting flow over a NACA 0012

airfoil oscillating at large incidences was investigated by Ohmi et al. (1991), using flow visualization experiments and

numerical calculations. Reynolds numbers from 1500 to 104; and reduced frequencies (in this case, f n ¼ fc=2UN) of

0.1–1.0 were considered. The reduced frequency was identified as a key parameter in determining the vortex wake

pattern of the oscillating airfoil. Reynolds number effects were found to be small compared to other parameters. Raffel

et al. (1995) investigated the flow field over a NACA 0012 airfoil oscillating in pitch in a low-speed wind tunnel by

means of particle image velocimetry (PIV). During the upstroke a dynamic stall vortex formed at the leading edge,

which at a ¼ 24�; for example, extended over 75% of the upper surface of the airfoil. They observed a strong

aperiodicity of the flow structure during the downstroke motion from cycle to cycle.

In the simulations presented here, the dynamic stall characteristics of a pitching NACA 0012 airfoil at Reynolds

numbers of 3000 and 104 are studied using a vortex method for laminar flows, and the effects of the reduced frequency,

mean angle of attack, and location of the pitch axis are investigated.

2. Solution method

The governing equations for the incompressible flow of a Newtonian fluid in two dimensions are the Navier–Stokes

and continuity equations, which can be expressed in terms of the vorticity and stream-function as the following

@o
@t

þ ðu � rÞo ¼ nr2o; ð1Þ

r2c ¼ 
o: ð2Þ

In these equations u ¼ ðu; vÞ is the velocity vector, n is the kinematic viscosity, and o and c are the vorticity and stream-
function, respectively. Eq. (2) is the Poisson equation for stream-function which replaces the continuity equation.

Following Chorin (1973), an ‘‘operator-splitting’’ method is applied to the governing equations, and the following

two equations are obtained, which are solved sequentially in each time step

@o
@t

¼ 
ðu � rÞo; ð3Þ

@o
@t

¼ nr2o: ð4Þ

In this study, the vorticity field is discretized into a number of point vortices, and the time domain is also discretized

into small time steps. Eq. (3) states that the total derivative of vorticity is zero during ‘‘convection’’, or that the vorticity

of a particle is constant as it is convected with the local velocity. Hence, in order to satisfy the ‘‘convection’’ part of the

governing equations, the velocity field is obtained, and each ‘‘vortex particle’’ is convected with the local velocity for the

period of the time step. To do that, Eq. (2) is solved for the stream-function (given the vorticity field), and the velocity

field is then computed as the curl of the stream function. Next, the diffusion process is simulated by solving Eq. (4)

using a second-order ADI finite difference scheme. The ‘‘no-flow’’ boundary condition is satisfied during the solution of

the convection problem, and the ‘‘no-slip’’ boundary condition is satisfied by the creation of new vorticity on the body

surface during each time step.

In the present vortex method, a computational grid is used for the following purposes: (a) solving the Poisson

equation for the stream-function given the vorticity field, (b) calculating the velocity field given the stream-function, (c)

solving the diffusion equation for the vorticity field. Also, the new vorticity is created at the location of the first row of

grid nodes, on the surface of the body. The computational grid is fixed to the body, and hence, moves with the airfoil as

it oscillates.

Further specific details of the numerical methods used in this study (including derivation of equations, accuracy of

the numerical schemes, the computational grid, and calculation of the force coefficients) are given in Akbari and Price

(2000) and Akbari (1999), and hence are not repeated here for the sake of brevity. It is noted here, however, that the

present vortex method is applicable only to two-dimensional, incompressible flows, the numerical schemes are
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unconditionally stable, and the finite-difference formulations (for the solution of the Poisson and diffusion equations)

are nominally second-order accurate.

In this study, a pitching airfoil is considered, with the instantaneous angle of attack given by

a ¼ %aþ A cosðOtÞ; ð5Þ

where a is the angle of attack at time t; %a is the mean angle of attack, A is the amplitude of the pitching oscillation (in

rad), and O ¼ 2pf ; with f being the frequency of oscillation.

3. Airfoil profile

In this study, conformal transformations are used to map a circle onto an airfoil, and vice versa. The general form of

the transformation F : zðx; yÞ-wðx; ZÞ that transforms a circle onto our desired profile is given by

w ¼ FðzÞ ¼ z þ
ðC 
 BÞ2

z

� �

 P

� �
e
ia þ P; ð6Þ

where z ¼ x þ iy is a point on or outside the circle in the z-plane, w ¼ xþ iZ is the corresponding point on or outside the
transformed profile in the w-plane, and B; C; a; and P are control parameters that are described below with the help of

Fig. 1.

As can be seen in Fig. 1, C is the interception point of the circle and the positive side of the x-axis. The center of the

circle is located at point ð
e; dÞ; P is the location of the rotation axis of the profile in the w-plane, and a is the angle of
rotation, positive in the clockwise direction. B in Eq. (6) is a control parameter that, along with the eccentricity of the

circle, determines the shape of the profile in the transformed plane (w-plane).

In this article, an airfoil profile is considered that closely resembles the NACA 0012 airfoil, by setting e ¼ 0:068;
d ¼ 0; and B ¼ 0:04 in Eq. (6). The profiles of the airfoil obtained by our transformation and that of a NACA 0012

airfoil are compared with each other in Fig. 2, and, as can be seen, they are indistinguishable from one another. A close-

up view of the two profiles in the vicinity of the leading- and trailing-edges is given in Fig. 3. As seen, in these areas the

differences between the two profiles are noticeable. However, one should consider the scale of the plots in order to

realize the insignificance of these differences between the two profiles. Therefore, we will consider our profile to be a

very close resemblance of a NACA 0012 airfoil.

4. Results and discussion

The simulation results from our parameteric study of the dynamic stall flow of the NACA 0012 airfoil are presented

here. A summary of the case-studies in this investigation is shown in Table 1. In this work emphasis is put on

investigating the effects of reduced frequency of oscillation of the airfoil. In all case-studies the flow is started

z-plane w-plane

x

y

ξ 

η 

(C, 0)

(− , δ ε )

Pα 

Fig. 1. The Joukowski transformation of the z-plane (circle) into the w-plane (airfoil).
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impulsively at a steady angle of attack amin: After the flow achieves steady state at this steady angle, the pitching

oscillation of the airfoil is started at the given frequency, and a few oscillation cycles of the airfoil are simulated.

In the following, the force and pitching moment coefficients for all cases are presented and analyzed, and the flow

fields are studied. In all numerical simulations a time-step size of Dt ¼ 0:01 and 300� 360 grids have been used. It
should be noted that the numerical method used in this study is unconditionally stable, and the selected numerical

parameters produced grid-independent results.

4.1. Static airfoil

A number of flow simulations are first presented for steady angles of attack of the airfoil. In this study the static stall

angle is predicted at aE15� for a Reynolds number of Re ¼ 104: The steady values of the force and pitching moment
coefficients versus angle of attack are plotted in Fig. 4. In Fig. 4(a), the normal force coefficient predictions for

Re ¼ 104 are compared with the experimental results taken from Abbott and von Doenhoff (1959) for Re ¼ 6� 106;
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Fig. 3. Close-up view of the two profiles in the vicinity of: (a) the leading-edge, (b) the trailing-edge: ——, NACA 0012 profile; - - -,

profile from transformation.

Table 1

Input parameters for simulations of cross-flow over a pitching NACA 0012 airfoil

Re k %a Da Axis

104 0.15 15� 10� c=4
104 0.25 15� 10� c=4
104 0.50 15� 10� c=4
3000 0.25 15� 10� c=4
104 0.25 20� 10� c=4
104 0.25 15� 10� c=2

0 0.25 0.5 0.75 1

x

-0.2

0

0.2

y

Fig. 2. Comparison of a NACA 0012 airfoil profile and that obtained from our transformation: ——, NACA 0012 profile; - - -, profile

from transformation.
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and from Johari and Durgin (1998) for Re ¼ 1:02� 105 (all data are for a NACA 0012 airfoil). As seen in this figure,

the flow Reynolds number has some effect on the normal force coefficient. A consistent decrease with decreasing

Reynolds number (over a range of two orders of magnitude) is observed in the magnitude of the normal force

coefficient. This effect has been reported previously for a large change in the Reynolds number. For example, Massey

(1979) presented the static lift and drag coefficients versus angle of attack for a particular airfoil at two Reynolds

numbers of 4:3� 105 and 2:1� 104; where for any given angle Cl is considerably lower at the lower Reynolds number

(e.g., at a ¼ 10�; 0.49 compared to 1.4), and Cd is higher (e.g., at a ¼ 10�; 0.19 compared to 0.07). By comparison,
Fig. 4(a) shows a reasonable agreement of our numerical results with the experimental data, considering the differences

in the Reynolds number. The static stall occurs at aE16� in the experiments reported by Abbott and von Doenhoff, and
it is predicted at aE15� in this study.
As seen in Fig. 4(b), the pitching moment coefficient (around the quarter-chord) in the experimental data is

approximately zero for ap12�; and then it drops to negative values at higher angles of attack. However, in our
simulations the pitching moment coefficient is predicted at positive values for some angles of attack of less than 12�;
nonetheless, the trend in our data follows that in the experimental data for aX12�: The differences in the magnitude of
the moment coefficient for a > 12� are attributed to the large difference in the Reynolds number. Note that the normal
force coefficient is lower at a lower Reynolds number, hence, with similar locations for the aerodynamic center, a lower

pitching moment coefficient is expected at a lower Reynolds number.

Shown in Fig. 4(c) are the calculated drag coefficients in this study, along with some experimental data from Abbott

and von Doenhoff (1959). No experimental data for Cd is available for a > 8�: The scale of this plot is too large for the
variation of experimental Cd with a to be clearly seen. Our numerical results also predict small values for Cd at ap8�;
followed by a considerable increase at higher angles of attack. The drag coefficient predicted in the present study has a

higher magnitude than that reported from experiments for ap8�; where experimental data are available. However, note
should be made that these data are for Reynolds numbers of two orders of magnitude difference. A higher drag

coefficient is expected at a lower Reynolds number for the same airfoil at the same angle of attack (e.g., Massey, 1979).

Overall, the simulation results from this study for steady angles of attack are in reasonable agreement with available

experimental data (considering the Reynolds number differences), particularly in terms of the lift coefficient and the

static stall angle.
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Fig. 4. The force and pitching moment coefficients at steady angles of attack: (a) Cn; (b) Cm; (c) Cd : � present numerical results for
Re ¼ 104; W experimental results due to Johari and Durgin (1998) for Re ¼ 1:02� 105; þ experimental results from Abbott and von

Doenhoff (1959) for Re ¼ 6� 106:
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4.2. A flow visualization comparison

Before presenting the flow field results for the main case-studies, we shall first study a case for which some

experimental flow visualization results are available.

Ohmi et al. (1991) studied the starting flow over a NACA 0012 airfoil for Reynolds numbers of between 1500 and 104;
and at different reduced frequencies. Shown in Fig. 5 are their experimental flow visualization results for the streamline

patterns of the unsteady flow past the pitching airfoil with1 k ¼ 0:2p; Re ¼ 3000; %a ¼ 30�; Da ¼ 15�; a0 ¼ 15�; and
x=c ¼ 0:5: The pitching oscillation of the airfoil started from the minimum incidence with the impulsive start of the

flow, and one oscillation cycle was completed during the experiment. As can be seen in the figure, the flow remains

attached to the airfoil up to dimensionless time tn � tUN=c ¼ 1 after the impulsive start, when aE25�: Then, the flow
starts to separate from the leading-edge, and a leading-edge vortex forms, grows, and is eventually shed from the upper

surface some time later during the downstroke. During the remainder of the oscillation cycle smaller vortex structures

are shed from both the upper surface and the trailing-edge of the airfoil.

The streamline plots from our simulation of the same flow as that studied by Ohmi et al. are presented in Fig. 6. Each

part of this figure corresponds to the similar part of Fig. 5. The two sets of plots are in a very good agreement, especially

for times up to tn ¼ 1:5: At this time the flow starts to separate from the airfoil, with the formation of a leading-edge

vortex. The size of this vortex at tn ¼ 2 is larger in the experimental results compared to that predicted in our

simulation, as seen in parts (d) of the two figures. The overall structure of the flow field is still very similar at tn ¼ 3;
including the wavy streamlines originating from the trailing-edge. As seen in parts (g) of the figures, the size and

position of the trailing-edge vortex at tn ¼ 3:5 are very similar in the two sets of results. The formation of a trailing-edge
vortex from tn ¼ 4 to 4.5 can be seen in both set of plots.

Overall, a high degree of similarity is observed between our simulation results for the flow field and those from the

experiment. This serves as a validation of the accuracy of the results obtained from our numerical simulations.

4.3. Dynamic stall flow

4.3.1. Effect of reduced frequency

Shown in Fig. 7 are the normal force ðCnÞ; pitching moment ðCmÞ; and drag ðCd Þ coefficients during five oscillation
cycles of the airfoil at %a ¼ 15�; with Da ¼ 10� and a reduced frequency of 0:5; at Re ¼ 104: As seen in the figure, after
completion of the second cycle no transient effects are present in the hysteresis loops; the differences that exist from one

cycle to the next after the second cycle of oscillation are due to the unsteady nature of the flow. Hence, it is believed that

simulating even fewer number of oscillation cycles would still capture the overall characteristics of the flow field.

Shown in Fig. 8 are the normal force, pitching moment, and drag coefficients, averaged over the last two oscillation

cycles as a function of reduced frequency, along with the variation of the same coefficients for steady angles of attack. It

is observed that the normal force coefficient in the pitching cases increase well beyond that at the static stall. Note that

stall occurs at aE15� in the steady case, when the normal force coefficient is CnE0:77:
Hysteresis effects are observed in the force and pitching moment coefficients at all reduced frequencies. At the lowest

reduced frequency, k ¼ 0:15; stall occurs at aE21:5�: In this case an overall positive damping in the pitching moment
loop is observed. This is concluded by comparing the areas of clockwise and counter-clockwise loops in the plot of the

pitching moment versus angle of attack. When the frequency is increased to k ¼ 0:25 stall is delayed to amax ¼ 25�; and
the positive-damping area in the pitching moment loop decreases compared to that obtained with k ¼ 0:15: When the
reduced frequency is increased further to k ¼ 0:5 the net damping in the pitching moment loop becomes negative. In
this case the drag coefficient loop is narrower, and the normal force coefficient takes negative values during the

downstrokes.

By comparing the results of these three case-studies, it is concluded that increasing the reduced frequency can slightly

increase the normal force ‘‘overshoot’’ up to a limit of 1:6; after which any further increase in the reduced frequency has
no apparent effect on the ‘‘overshoot’’. However, an increase in the reduced frequency also modifies the general profile

of the hysteresis loops. The minimum normal force coefficient decreases, and the drag coefficient loop becomes

narrower with increasing reduced frequency. But, perhaps the most important effect of increasing the reduced frequency

is the significant increase of the negative damping in the pitching moment cycle. Reducing negative damping in the

pitching moment cycle of the airfoil is important in the stability of its torsional oscillations.

In order to validate our numerical results for the force coefficients of a pitching airfoil a comparison with some

experimental results, or other reliable numerical data, is desirable. However, all the available experimental and

numerical results for the dynamic stall flow that also include the measurement or calculation of force coefficients, cover

1Note that k ¼ 0:2p is higher than that of the other results presented in this paper.
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the turbulent flow regime, at high Reynolds numbers of at least 106: Our numerical method, being for a laminar regime,
is not expected to produce accurate results for Reynolds numbers of higher than about 104: This large difference in the
Reynolds number (104 versus 106) has considerable effects on the behavior of the flow field and the force coefficients.

Fig. 5. Streamline plots for the NACA 0012 airfoil at Re ¼ 3000; f n ¼ 1:0; %a ¼ 30�; Da ¼ 15�; and a0 ¼ 15�; taken from Ohmi et al.

(1991). (a) tn ¼ 0:5; a ¼ 17:9�; (b) tn ¼ 1:0; a ¼ 25:4�; (c) tn ¼ 1:5; a ¼ 34:6�; (d) tn ¼ 2:0; a ¼ 42:1�; (e) tn ¼ 2:5; a ¼ 45:0�; (f) tn ¼ 3:0;
a ¼ 42:1�; (g) tn ¼ 3:5; a ¼ 34:6�; (h) tn ¼ 4:0; a ¼ 25:4�; (i) tn ¼ 4:5; a ¼ 17:9�; (j) tn ¼ 5:0; a ¼ 15:0�:
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Fig. 6. Streamline plots for the NACA 0012 airfoil at Re ¼ 3000; f n ¼ 1:0; %a ¼ 30�; Da ¼ 15�; and a0 ¼ 15�; from our simulation. (a)

tn ¼ 0:5; a ¼ 17:9�; (b) tn ¼ 1:0; a ¼ 25:4�; (c) tn ¼ 1:5; a ¼ 34:6�; (d) tn ¼ 2:0; a ¼ 42:1�; (e) tn ¼ 2:5; a ¼ 45:0�; (f) tn ¼ 3:0; a ¼ 42:1�;
(g) tn ¼ 3:5; a ¼ 34:6�; (h) tn ¼ 4:0; a ¼ 25:4�; (i) tn ¼ 4:5; a ¼ 17:9�; (j) tn ¼ 5:0; a ¼ 15:0�:
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Fig. 8. The hysteresis loops for the normal force ðCnÞ; pitching moment ðCmÞ; and drag ðCd Þ coefficients for the airfoil at %a ¼ 15� and

Re ¼ 104 oscillating with Da ¼ 10�; x=c ¼ 0:25; and reduced frequency: (a) 0.15, (b) 0.25, (c) 0.5: ——, pitching case; - - -, steady case.
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Fig. 7. The force and pitching moment coefficients versus angle of attack over five oscillation cycles for the airfoil at %a ¼ 15�;
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Hence, a qualitative comparison is made between our calculated force coefficients and a set of reliable data at the lowest

Reynolds number available to us.

Presented in Fig. 9 is a qualitative comparison of our results for k ¼ 0:15 and 0:25; %a ¼ 15�; and Da ¼ 10�; with the
numerical results due to Tuncer et al. (1990) for the dynamic stall of the same airfoil at Re ¼ 106 oscillating at the same

frequencies and angles of attack. Note that no data for Cd are presented in Tuncer et al. (1990) for the case with

k ¼ 0:25:
Some differences are observed between the two sets of results. Higher values of Cn and lower values of Cd are

reported for Re ¼ 106 compared to our calculated results for Re ¼ 104: This behavior was expected due to the Reynolds
number difference. Stall is predicted at aE21:5� in our simulation for k ¼ 0:15; while no stall is observed for this case at
Re ¼ 106: Because of this, a minimum value for Cm is obtained at aE21:5� in our calculations, while at Re ¼ 106 Cm

continues decreasing with decreasing a: However, for k ¼ 0:25 no stall effects are observed in the Cn loop in either

study. This is evident from the shape of the loops where Cn continues to increase with a up to the maximum angle of

attack. It is interesting to see the negative-damping region in the Cm loop reported in Tuncer’s results for k ¼ 0:25: The
same behavior is observed at a higher reduced frequency of k ¼ 0:5 in our simulations for Re ¼ 104:
It seems that our results for k ¼ 0:25 and 0.5 are, respectively, more similar to Tuncer’s numerical results for k ¼ 0:15

and 0.25. This observation suggests that a Reynolds number increase can also intensify the effects of the reduced
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Fig. 9. Comparison of the hysteresis loops for the force and pitching moment coefficients of the NACA 0012 airfoil oscillating about
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 3
; numerical results due to Tuncer et al. (1990) for
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frequency. Overall, despite such a large difference in the Reynolds number, some quantitative agreement is observed

between the two sets of results in terms of the hysteresis loops.

The flow field development for one cycle of oscillation of the airfoil is now presented for each case-study considered

so far. In the vorticity contour plots that follow, the white and black areas indicate positive and negative vorticity,

respectively.

Shown in Fig. 10 are a sequence of vorticity contour plots for the flow around the airfoil at several angles of incidence

during the third cycle of oscillation of the airfoil at %a ¼ 15�; with Da ¼ 10� and a reduced frequency of 0:15; at
Re ¼ 104: No apparent indication of flow separation is observed on the airfoil up to aE13:6� (Fig. 10d). At aE16:7� a
leading-edge separation bubble starts forming on the airfoil. Because of the relatively small scale of the vorticity

contour shown in Fig. 10(e), this separation bubble is not easily seen; however, the separation bubble is apparent when

larger scale versions of this figure are examined. Note that static stall occurs at aE15�: The separation bubble is seen to
cover most of the upper surface of the airfoil when aE19� (Fig. 10f). At aE22� the leading-edge vortex is shed from the
airfoil. At the maximum incidence a ¼ 25� a vortex forms at the trailing-edge, that promotes the separation of the

leading-edge vortex.

Fig. 10. Vorticity contour plots at several angles of attack for a pitching NACA 0012 airfoil, at k ¼ 0:15; Da ¼ 10�; %a ¼ 15�; rotation
axis at c=4; and Re ¼ 104:
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During the downstroke the trailing-edge vortex is shed, and a new leading-edge vortex grows and is about to be shed

when aE22:2�: In parts (j) to (m) of the figure two other smaller trailing-edge vortices can be seen shedding during the
downstroke. In the mean time, two vortical structures (with opposite rotation to the trailing-edge vortices) are also shed

from the upper surface of the airfoil. When a reachesE7:8� during the downstroke the flow is already attached at the
leading-edge, and by the time the cycle is complete the flow is reattached over the entire surface of the airfoil.

Fig. 8(a) shows that the normal force coefficient in this case continues to increase during the upstroke up to aE21�:
This is the point at which flow separates from the airfoil, as seen in Fig. 10(e)–(g). Near the maximum incidence, the

normal force suddenly increases again; this is due to the trailing-edge vortex being formed completely and giving a

suction effect over large part of the upper surface. During the downstroke, till aE7:8�; the normal force coefficient is
smaller than during the upstroke; this is attributed to the flow separation during this part of the cycle. Near the end of

the downstroke the normal force increases again, this is coincident with flow reattachment on the upper surface.

The vorticity contour plots for the airfoil at %a ¼ 15�; Da ¼ 10�; and k ¼ 0:25 are shown for the third oscillation cycle
in Fig. 11. At the beginning of the cycle the flow is not completely attached to the surface, and there are vortices in the

Fig. 11. Vorticity contour plots at several angles of attack for a pitching NACA 0012 airfoil, at k ¼ 0:25; Da ¼ 10�; %a ¼ 15�; rotation
axis at c=4; and Re ¼ 104:
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near wake which are due to the separation and vortex shedding from the previous cycle. As time increases the flow

becomes fully attached to the surface and the small vortices in the wake are convected downstream. The flow remains

fully attached to the surface up to aE16:5�:At aE19:5� the flow starts to separate from the leading-edge, and at aE22�

the flow is fully separated with the leading-edge vortex being fully formed and covering two-thirds of the upper surface.

Note that in the previous case, k ¼ 0:15; this situation was observed at aE19:3�: At amax the leading-edge vortex is shed
from the airfoil at about mid-chord position on the upper surface. Later during the downstroke at aE22:3� a trailing-
edge vortex is formed while the leading-edge vortex is being convected in the near wake. The flow over the upper surface

and in the wake remain vortical during the downstroke, as two smaller vortices from the trailing-edge and other vortical

structures from the upper surface are shed. At the end of the cycle the flow reattaches to most of the upper surface. Note

the similarities in the flow field between the beginning and the end of the cycle.

It is interesting to note that the flow field remains ‘‘quiet’’ during most of the upstroke, and much of the separation

and vortex-shedding activity occurs between aE22� in the upstroke and aE8� in the downstroke. Also interesting to
note is the speed at which the flow field changes near amax in the upstroke. During a change in incidence of only about
3�; from aE22� to 25�; the flow field ‘‘bursts’’ into a vortical flow and remains as such in the downstroke down to

aE7�:
As seen in the normal force coefficient plot for this case, Fig. 8(b), Cn continues to increase up to amax during the

upstroke; that is when the flow completely separates from the surface. In this case the flow separates at a higher

incidence compared to the previous case with a lower reduced frequency, k ¼ 0:15: Also, similar to the previous case,
both the separation and reattachment of the flow start from the leading-edge.

Shown in Fig. 12 are the vorticity contour plots for the airfoil at %a ¼ 15�; Da ¼ 10�; and k ¼ 0:5 during the third
oscillation cycle. At the beginning of the cycle the wake is still vortical and the flow remains separated over the rear half

of the upper surface of the airfoil as a result of separation in the previous cycle. In this case the frequency of oscillation

is so high that the flow cannot recover from the separation which occurred in the previous cycle. As time increases the

vortices on the airfoil are convected downstream, and the flow becomes attached to the entire upper surface, even

though the angle of attack is increasing. This is seen in parts (b)–(e) of the figure for incidences up to aE16�: At aE19�

the first indication of a leading-edge separation bubble can be observed, but the flow is still attached over most of the

surface. At aE22:4� this separation bubble increases in size. Note that the narrow separation region on the rear half of
the upper surface is the result of the previous cycle of oscillation, and is not due to the newly formed separation bubble.

At a ¼ 25� the leading-edge vortex has completely formed and has travelled half-way along the surface. This should be

compared with the previous two cases, k ¼ 0:15 and 0:25; in which the leading-edge vortex had already travelled further
downstream at this angle of attack. The leading-edge vortex continues to evolve and travel downstream during the

downstroke, down to aE13:3�: At aE10:4�; as the leading-edge vortex is being shed, a trailing-edge vortex starts to
form. During the remainder of the downstroke the trailing-edge vortex continues to grow, and is later shed from the

airfoil. This is while the remains of the first leading-edge vortex, and the smaller, secondary vortices formed on the

upper surface during the downstroke, prevent the flow from reattaching.

The separated flow at such small angles of attack results in a high-pressure area on the upper surface of the airfoil,

such that the lift coefficient takes negative values, as seen in Fig. 8(c). For most of the downstroke the leading-edge

vortex covers all of the upper surface aft of the quarter-chord, and hence, the low-pressure region on that part of the

airfoil results in a negative pitching moment between aE25� and 12�; see Fig. 8(c). Note the considerable differences in
the flow field between this case, with the highest reduced frequency, k ¼ 0:5; and the previous two cases, with k ¼ 0:15
and 0:25: In the present case the flow remains attached to most of the upper surface during most of the upstroke

(Fig. 12b–e), the leading-edge vortex is formed and released entirely during the downstroke, and only one trailing-edge

vortex is shed per cycle of oscillation. Also both the separation and reattachment of the flow started from the leading-

edge, similar to the previous two cases with lower reduced frequencies.

4.3.2. Effect of Reynolds number

Results for a Reynolds number of Re ¼ 3000; a value about three times lower than in other case-studies, are shown in
Fig. 13(a). If these results are compared with those of Fig. 8(b) the effect of Reynolds number can be seen. In general,

the hysteresis loops in the two cases are very similar. However, the minimum value of Cm is around 
0:14 for
Re ¼ 3000; and around 
0:19 for Re ¼ 104: Also, the area of the negative-damping region near amax is larger for the
lower Reynolds number. Other than these differences in detail, the two sets of hysteresis loops are very similar for these

two cases. These results suggest that, compared to other parameters, a Reynolds number difference of this order has

only minor effects on the behavior of the force and pitching moment coefficients in the dynamic stall characteristics of

this airfoil.
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4.3.3. Effect of mean incidence

If the mean incidence is increased to %a ¼ 20� the resulting force and moment coefficients are as plotted in Fig. 13(b).

The force coefficient hysteresis loops suggest that stall occurs at aE26:5�: Comparing the results for this case with those
for a mean incidence of 15�; Fig. 8(b), shows that an increase in the mean incidence has considerable effect on the force
and moment coefficients of a pitching airfoil. In particular, for the results at the higher value of incidence the hysteresis

loops are wider (higher hysteresis effects); the maximum value and the average of the force coefficients are greater; and

the negative damping in the pitching moment loop is smaller.

The vorticity contour plots during the third oscillation cycle for the airfoil at %a ¼ 20�; Da ¼ 10�; and k ¼ 0:25 are
shown in Fig. 14. At the beginning of the cycle the flow is still separated over parts of the upper surface as a result of the

flow separation which occurred during the previous cycle. However, later at aE12:6� the flow reattaches to parts of the
surface. At aE15:5� a new separation bubble starts to form on the upper surface of the airfoil. The development of this

separation bubble into a vortex is observed during aE18:5� to 24:5�: At aE27� this vortex is about to shed from the

surface.

At the maximum incidence of the airfoil a trailing-edge vortex forms, producing a large region of flow separation on

the surface. During the downstroke two other trailing-edge vortices form and are shed, while two large-scale structures

of positive vorticity form and are released from the upper surface. As the end of the oscillation cycle is approached the

Fig. 12. Vorticity contour plots at several angles of attack for a pitching NACA 0012 airfoil, at k ¼ 0:50; Da ¼ 10�; %a ¼ 15�; rotation
axis at c=4; and Re ¼ 104:
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formation of any further vortices ceases, but the flow remains separated over most of the upper surface. Compared to

the simulation with a lower mean incidence %a ¼ 15�; in this case the flow remains separated during a longer period of
the oscillation cycle and the wake is more vortical and violent.

As observed in Fig. 14(f) and (g), the flow becomes massively separated at aE25� during the upstroke. This is
associated with a steep drop in the normal force coefficient, as shown in Fig. 13(b). Also, referring to Fig. 14(e) and (k),

for example, one can explain the behavior of the pitching moment coefficient in the upstroke compared to the

downstroke, at aE21�: During the upstroke at aE21�; shown in Fig. 14(e), there is a large vortex over most of the
upper surface aft of the rotation axis, resulting in a low-pressure area and producing a ‘‘nose-down’’ pitching moment

(a negative Cm). The surface pressure coefficient ðCpÞ distribution for this particular time is shown in Fig. 15; as seen,
the ‘‘positive’’ area of the pressure distribution aft of the quarter-chord is larger compared to that ahead of it, and hence

a ‘‘nose-down’’ pitching moment.

On the other hand, during the downstroke at around the same angle, shown in Fig. 14(k), the flow over most of the

upper surface is separated, resulting in a high-pressure area and producing a ‘‘nose-up’’ pitching moment, thus a

positive Cm: The surface pressure coefficient distribution at this particular time is plotted in Fig. 16, which shows that
the pressure on the upper surface is even higher than that on the lower surface aft of the quarter-chord. The net

‘‘positive’’ area of the pressure distribution aft of the quarter-chord is less than that ahead of it, hence, a ‘‘nose-up’’

pitching moment.

4.3.4. Effect of pitch axis location

If the pitch axis is located at the mid-chord ðx=c ¼ 0:5Þ rather than the quarter-chord ðx=c ¼ 0:25Þ; the force and
moment coefficients, averaged over the last two oscillation cycles, are as plotted in Fig. 13(c).

A comparison of the force coefficient loops for this case with those shown in Fig. 8(b), when the pitch axis is at the

quarter-chord, suggests that moving the pitching axis location backwards does not have much effect on the force

coefficients, but modifies significantly the pitching moment hysteresis loop. In this case a considerable increase in

negative damping even at low reduced frequencies is observed.
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Fig. 13. The hysteresis loops for the normal force ðCnÞ; pitching moment ðCmÞ; and drag ðCd Þ coefficients for the airfoil oscillating with
Da ¼ 10� and k ¼ 0:25; and: (a) %a ¼ 15�; Re ¼ 3000; x=c ¼ 0:25; (b) %a ¼ 20�; Re ¼ 104; x=c ¼ 0:25; (c) %a ¼ 15�; Re ¼ 104; x=c ¼ 0:5:
——, pitching case; - - -, steady case.
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Fig. 15. The surface pressure coefficient distribution at aC21:5� during the upstroke over the airfoil oscillating with k ¼ 0:25; Da ¼
10�; %a ¼ 20�; x=c ¼ 0:25; and Re ¼ 104:

Fig. 14. Vorticity contour plots at several angles of attack for a pitching NACA 0012 airfoil, at k ¼ 0:25; Da ¼ 10�; %a ¼ 20�; rotation
axis at c=4; and Re ¼ 104:
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Fig. 16. The surface pressure coefficient distribution at aC21:5� during the downstroke over the airfoil oscillating with k ¼ 0:25;
Da ¼ 10�; %a ¼ 20�; x=c ¼ 0:25; and Re ¼ 104:

Fig. 17. Vorticity contour plots at several angles of attack for a pitching NACA 0012 airfoil, at k ¼ 0:25; Da ¼ 10�; %a ¼ 15�; rotation
axis at c=2; and Re ¼ 104:
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The vorticity contour plots during the third oscillation cycle for the airfoil in this case, with x=c ¼ 0:5; %a ¼ 15�;
Da ¼ 10�; and k ¼ 0:25; are shown in Fig. 17. The flow is attached over most of the upper surface of the airfoil at the
beginning of the oscillation cycle, while the wake is still vortical due to the previous cycle. The flow remains attached

during the upstroke up to aE16:5�; as was the situation with the pitch axis located at the quarter-chord. At aE19:5� a
separation bubble forms at the leading-edge which then develops into a vortex. At amax this leading-edge vortex has
already travelled two-thirds of the airfoil upper surface.

In the downstroke part of the cycle a trailing-edge vortex forms, while the leading-edge vortex is being shed from the

upper surface. As the downstroke continues the first trailing-edge vortex sheds, as seen in Fig. 17(k). Meanwhile, a

second vortex forms on the upper surface, and is later shed from the surface. The flow starts to reattach at the leading-

edge at aE7:9�: Even at a ¼ 5�; at the end of the cycle, the flow is not completely attached to the surface.
Comparing Fig. 17 with Fig. 11, with pitch axis located at the mid-chord and quarter-chord, respectively, shows that

the flow fields in these two cases are very similar during most of the upstroke. Even at amax the two flow fields have
considerable similarities. The most significant difference is in the timing of the formation and shedding of the trailing-

edge vortices, which for x=c ¼ 0:5 is slightly behind that for x=c ¼ 0:25; as can be observed by comparing parts (k) with
(m) of Figs. 17 and 11. The resemblance between the flow fields can also be detected from the similarities between the

force coefficient plots of the two cases, shown in Figs. 8(b) and 13(c). However, the pitching moment coefficient loops

for the two cases are quite different, which was predictable given the difference in location of the pitching axis. For

x=c ¼ 0:5 the pitching moment is always positive, which means that the aerodynamic center is always ahead of the pitch
axis.2

The behavior of the pitching moment, as shown in Fig. 13(c), can be explained as follows. During most of the

upstroke the flow is either attached near the leading-edge, or a vortex is present in this area. In either case a low-

pressure region is maintained in this area. For example, at aE19:5� the leading-edge vortex covers the front half of the
upper surface, as seen Fig. 17(f). The surface pressure coefficient distribution for this instant of time is shown in Fig. 18.

It can be seen that the pressure ahead of the mid-chord is much lower than that aft of the mid-chord, and thus a ‘‘nose-

up’’ pitching moment about the mid-chord is produced. Also, during the downstroke the intensity of the separated flow

is higher aft of the mid-chord, as seen in Fig. 17(j)–(n), keeping a lower pressure ahead of the mid-chord compared to

that aft of the mid-chord. For example, Fig. 17(j) shows a large separated flow region aft of the mid-chord on the upper

surface at aE19:4� during the downstroke. The surface pressure coefficient distribution for this instant of time is shown
in Fig. 19. It is clear that the pressure on the upper surface aft of the mid-chord is even higher than that on the lower

surface. The pressure ahead of the mid-chord, on the other hand, is lower on the upper surface compared to that on the

lower surface. Hence, a ‘‘nose-up’’ pitching moment is produced about the mid-chord. However, Figs. 18 and 19 show

that the pressure on the upper surface ahead of the mid-chord is much lower (or, 
Cp is higher) during the upstroke

compared to that during the downstroke, and hence, the positive pitching moment is higher during the upstroke.
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Fig. 18. The surface pressure coefficient distribution at aC19:5� during the upstroke over the airfoil oscillating with k ¼ 0:25; Da ¼
10�; %a ¼ 15�; x=c ¼ 0:25; and Re ¼ 104:

2This, in turn, was predictable, since the aerodynamic center is usually located around the quarter-chord for most conventional

airfoils.
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5. Conclusions

In this paper the pitching oscillations of a NACA 0012 airfoil were studied, and the effects of some parameters on the

dynamic stall characteristics of the airfoil were investigated.

It was observed that the pitching oscillations of the airfoil delayed the flow separation to higher incidences compared

to the static stall case. The normal force was observed to increase well beyond that at the static stall angle. Separation

was observed to start from the leading-edge, followed by the formation and convection of a vortex along the surface of

the airfoil. Trailing-edge vortices were also observed to form and shed from the airfoil. During the downstroke of the

oscillation one or more ‘‘secondary’’ vortices were observed to form and release from the upper surface, following the

release of the primary dynamic stall vortex.

The reduced frequency of oscillation was found to have a major effect on the flow field and the force coefficients of

the airfoil. Flow separation was delayed to higher incidences with increasing reduced frequency. Hence, the peak in the

normal force coefficient was observed at a higher angle of attack with increasing the reduced frequency. It was found

that the maximum normal force slightly increased, and the minimum pitching moment decreased, with increasing

reduced frequency. However, perhaps the most important effect due to an increase in the reduced frequency was a

considerable increase in the ‘‘negative’’ damping in the pitching moment coefficient hysteresis loop observed at the

highest reduced frequency.

The Reynolds number of the flow, on the other hand, was found to have little effect on the dynamic stall

characteristics of the airfoil, at least for the range of Re ¼ 3000–104 considered in our simulations.

Increasing the mean incidence caused flow separation to occur earlier in an oscillation cycle, even at lower angles of

attack compared to a case with a lower mean incidence. The flow field in this case was found to be more vortical, and

the wake to be wider and more violent. Also, the hysteresis effects in the force and pitching moment coefficient loops

intensified, and the maximum normal force and drag coefficients increased. On the other hand, the minimum pitching

moment increased (its absolute value decreased), and the ‘‘negative’’ damping in the pitching moment loop was

suppressed.

The simulations showed that moving the location of the pitch axis backwards, from the quarter-chord to the mid-

chord, had minor effects on the flow field in terms of the flow separation and the timing of the formation and release of

the leading- and trailing-edge vortices, as well as on the hysteresis loops of the force coefficients. For example, it was

found that this change of location caused the trailing-edge vortex to be shed slightly later during the downstroke, the

normal force coefficient loop to become slightly thinner, and the drag coefficient loop slightly wider. However, this

change of the pitch axis location caused a dramatic change in the pitching moment loop: the pitching moment became

positive during the entire cycle, and a large ‘‘negative’’ damping region appeared in the pitching moment loop. This

behavior of the pitching moment loop was explained using the flow field information and the surface pressure

coefficient distribution plots.
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Fig. 19. The surface pressure coefficient distribution at aC19:4� during the downstroke over the airfoil oscillating with k ¼ 0:25;
Da ¼ 10�; %a ¼ 15�; x=c ¼ 0:25; and Re ¼ 104:
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